评论回复可查看关于课程的详细介绍及描述!

机器学习的必备核心理论
30 个最流行的机器学习模型
基于 Python 语言的实例练习
完整的机器学习知识体系
课程介绍
“机器学习 40 讲”终于和你见面了!

2017 年 12 月,王天一老师在极客时间开设了“人工智能基础课”专栏,带你进入人工智能的大门,介绍了人工智能所需要的基础数学、当前流行的深度学习技术、以及其他可能突破的技术路径等方方面面的内容。

人工智能基础课的第 2 季聚焦于机器学习。在新技术层出不穷的今日,机器学习依然占据着人工智能的核心地位,也是人工智能中发展最快的分支之一。

那么,怎样入门机器学习?又有哪些学习路径呢?无论机器学习领域充斥着多少花哨的技术,归根结底,都是基本模型与基本方法的结合,而理解这些基本模型和基本方法就是掌握机器学习的要义所在。那么,问题来了,这么多模型到底要怎么学习呢?其实,这里面最关键的,是要梳理出机器学习的主线,把握不同模型之间的内在关联,能够融会贯通、系统地理解机器学习。

在本专栏中,王天一老师会从机器学习中的共性问题讲起,从统计机器学习和概率图模型两个角度,详细解读 30 个最流行的机器学习模型。除了理论之外,在每个模型的介绍中还会穿插一些基于 Python 语言的简单实例,帮你加强对于模型的理解。

专栏共 3 大模块。

机器学习概观。这一模块将从频率学派与贝叶斯学派这两个视角来看机器学习,并讨论超脱于模型和方法之外的一些共性问题,包括模型的分类方式、设计准则、评估指标等。

统计机器学习模型。这一模块将以线性模型为主线,讨论模型的多种扩展和修正,如正则化、线性降维、核方法、基函数变化、随机森林等,探究从简单线性回归到复杂深度网络的发展历程。

概率图模型。这一模块将以高斯分布为起点,将高斯分布应用到从简单到复杂的图模型中,由此认识不同的模型特性与不同的计算技巧,如朴素贝叶斯、高斯混合模型、马尔科夫随机场等。

***此处内容评论后可见***

温馨提示:此处为隐藏内容,需要评论或回复留言后可见

评论查看

关于

发表回复

后才能评论